

Applied Genetics and Genomics in other Species of Economic Interest

Organised by a Standing Committee: YES NO

Meeting informationDate: July 4, 2023Time: 14:00Number of participants: 50

Chair

Name: Amparo Martínez		
Affiliation: University of Córdoba, Cordoba, Spain.		
Contact email: ib2mamaa@uco.es		

Co-Chair (optional)

Name: Marcela Martinez	
Affiliation: Sociedad Rural de Argentina, Argentina	
Contact email: <u>mmartinez@sra.org.ar</u>	

Agenda

2:00 PM	Welcoming remarks	
2:10 PM	Pig CT Discussion – Amparo Martínez.	
2:20 PM	Dromedary CT Discussion - Marcela Martinez.	
2:30 PM	Alpaca/Llama CT Discussion – Angelika Mąsior.	
2:40 PM	Pigeon CT Discussion - Angelika Mąsior.	
2:50 PM	Sheep CT Discussion - Agata Piestrzynska-Kajtoch.	
3:00 PM	Goat CT Discussion - Clementina Rodellar.	
3:10 PM	A future buffalos CT proposal.	
3:20 PM	Candidates of new Duty Labs for 2024-2025 Comparison tests.	
	Election of the committee and any other business.	
3:30 PM	Tea/coffee break.	
4:00 PM	The development of a 61K Illumina? SNP chip for dromedaries under the frame of	
	the 2019 Agricultural Greater Good (AGG) initiative. M. Di Civita. (89679).	
4:15 PM	Selection of an Ovine SNP Parentage Panel for Consideration as the ISAG	
	Comparison Test Panel. R Ferretti. (89810).	

INTERNATIONAL SOCIETY FOR ANIMAL GENETICS

4:30 PM	High-throughput detection of single nucleotide polymorphisms with flexible	
	content panels. Not presented	
4:45 PM	Genetic differentiation of Camelus bactrianus from Kazakhstan. Kairat	
	Dossybayev. (89370).	
5:00 PM	Genetic diversity and population structure among Central European native sheep	
	breeds using microsatellite markers. Zuzana Sztankoova. (89526).	
5:15 PM	Genome-wide association study between copy number variations and	
	economically important traits in American mink. P Davoudi. (89600).	

Summary of the meeting

1. Welcoming Remarks

One hundred thirty-six laboratories have participated in the CT organised by these Standing Committee (10 in alpaca/llama CT, 7 in dromedary CT, 36 in goat CT, 29 in pig CT, 13 in pigeon CT and 41 in sheep CT).

2. Pig CT Discussion

The University of Cordoba (Spain) was the Duty lab. Thirty-two labs requested samples. Twenty-nine labs reported results. Twenty-two samples (including two reference samples) were submitted to all participants. The relative overall marker concordance among labs was good, ranging from a minimum of 87.76% (S0386) to a maximum of 98.45% (S0227). Twenty-eight labs answered both parentage questions correctly, and one lab didn't answer the parentage correctly. Marker S0386 showed a discrepancy between labs regarding allele 177 in PCT4, PCT9, PCT10, PCT14 and PCT17 samples. This issue was discussed during the previous CTs of 2014, 2017, 2019 and 2021. The low concordance for these samples could be explained by using primers unable to amplify allele 177 or using an inappropriate temperature. It is recommended to remember again to use the correct primer sequences as proposed in DNA microsatellite analysis for parentage control in Austrian pigs. Nechtelberger D, Kaltwasser C, Stur I, Meyer JN, Brem G, Mueller M, Mueller S., Anim Biotechnol. 2001. Nov; 12(2):141-4. PMID: 11808629. The recommended primers are Fw: 5'-GAA CTC CTG GGT CTT ATT TTC TA, Rv: 5'-GTC AAA AAT CTT TTT ATC TCC AAC AGT AT. The recommended amplification temperature is 48 ºC. Many labs reported an incorrect denomination for one allele of the marker S0005 in samples PCT5, PCT6, PCT7 and PCT10. The correct genotypes of this marker are: PCT5, 245/281; PCT6, 241/275; PCT7, 231/275; PCT10, 251/275. Another recurrent error is the 135 of the marker SW951, and many labs did not report this allele or call it incorrectly. Since these situations have previously arisen, these mismatches were considered errors in the final ranking system.

3. Dromedary CT Discussion

Qatar Genetic Lab (Qatar) was the Duty lab. Eight labs requested samples, and seven labs reported results. Twenty-five samples (including two reference samples) were submitted to all participants. The relative overall marker concordance among labs was good, ranging from a minimum of 97.45% (LCA56) to a maximum of 100.0% (LCA65, LCA66, LCA8 and YWLL29). Marker LCA19 of the core panel was mono-allelic. In the backup panel, markers (LCA24, LCA77, YWLL36 and VOLP59) were also mono-allelic. This was also the case in several previous CT. All seven labs answered the first parentage question correctly, and the second one answered correctly by six out of seven labs.

Because of low PE, changes in the current core and backup ISAG panels were suggested, and including more polymorphic markers such as (LGU49, VOLP3, CVRL01 and CVRL05) were also proposed. UC Davis in

INTERNATIONAL SOCIETY FOR ANIMAL GENETICS

VGL commented that the panel was useful for their work and requested to be the duty lab for the next ISAG session to provide another set of samples and check whether the panels must be changed.

4. Alpaca/Llama CT Discussion

The Duty lab was the National Research Institute of Animal Production (Poland). Twelve labs requested samples. Ten labs reported results. Twenty-two samples (5 llama samples and 17 alpaca samples, including two alpaca reference samples) were submitted to all participants. The relative overall marker concordance among labs was very good, ranging from a minimum of 96.5% (LCA37) to a maximum of 100.0% (LCA5, LCA99, YWLL29 and YWLL40). Two loci were problematic for some participants. In the ACT20 sample, an extreme allele 186 was observed at the LCA37 locus and was omitted from some participants' reports. A similar situation occurred in the ACT12 sample at the LCA19 locus, where the extreme allele 136 was found. Both alleles overlap with areas of other markers, making them easy to miss. All participants answered both parentage questions correctly.

5. Goat CT Discussion

The Duty lab was the University of Zaragoza, LAGENBIO Lab (Spain). Thirty-seven labs requested samples. Thirty-six labs reported results. Twenty samples (including one reference sample_GCT01) were submitted to all participants. There were a few minor problems with some samples: specifically, we had to send five new samples because there was too little DNA or the tubes were empty (1 to France and 4 to Brazil).

All labs' absolute and relative genotyping ranged between 100% and 85% in both cases, except for one lab whose accuracy was 48.5%. Looking at the ranks, concerning absolute accuracy, 69.4% of the labs are in Rank 1, and 72% are in Rank 1. Regarding relative accuracy, 97.2% of the labs answered correctly to the parentage question, and only one lab failed. Accuracy relative to overall marker concordance among labs was good and similar to the last comparison test, ranging from a minimum of 94.88% (SRCRSP05) to a maximum of 98.98% (INRA005).

Some discrepancies have been observed in 2 markers, particularly in one sample in each. For sample GCT20 at marker **SRCRSP05**, 20 labs reported a heterozygous genotype (171/173), 15 reported a homozygous genotype 173/, and 1 identified the sample as 175/177.

The second marker in which differences between labs were observed was **MAF065** in sample 14. Although genotype homozygous 151/ is the majority (18 labs), the rest of the laboratories (18 labs) assigned 10 different genotypes for this sample. The possibility of accepting the different genotypes proposed by the laboratories for these two markers is proposed but not accepted.

To determine the correct genotype of sample GCT20 for marker SRCRSP05 and sample GCT14 for marker MAF65, it is proposed to sequence both samples and Agata Piestrzynska-Kajtoch, from Poland, sequenced these samples. According to the results, this allele 171 of SRCRSP05 seems different from other analysed homozygous alleles - it has more AT repeats. While alleles 169, 173 and 175 differ in the number of AC repeats (19, 21, 22, respectively) and have the same number of AT repeats (4), allele 171 seems to have 15 AC repeats and 9 AT repeats. This allele 171 has not previously been reported in any CT, so we propose that, although the correct genotype is heterozygous, not consider the genotype 173 homozygous as an error for sample GCT20 in this round.

The sequencing analysis results of the GCT14 sample support that the correct genotype of the MAF065 is 151 homozygous.

ISAG INTERNATIONAL SOCIETY FOR ANIMAL GENETICS

6. Sheep CT Discussion

The Duty lab was the National Research Institute of Animal Production (Poland). Forty-three labs requested samples. Forty-one labs reported results. Twenty-one samples (including 1 reference sample) were submitted to all participants. The relative overall marker concordance among labs was good, ranging from 93,5% (MCM527) to AMEL (99,47%). Parentage questions were answered correctly by forty and 39 labs, respectively. The genotypes of the samples OCT08 and OCT10 in marker OARFCB20 were discussed. Nine and eight labs reported these samples as 91/ homozygotes instead of 89/91 heterozygotes. The duty lab sequenced both samples and proved that the correct genotype for both samples is 89/91. This issue was also discussed during the previous ISAG CT 2020-2021, and the mistakes will be counted as errors in the ranking. For sample OCT15 in marker INRA172 five different genotypes were reported (126/140 – 18 Lab; 126/138 – 16 labs; 126/ - 3 labs, 126/139 – 1 Lab, 133/144 – 1 lab). The duty lab sequenced this sample and proved that the correct genotype of this sample is 126/140. Because 138 or 140 allele case was discussed in previous CTs, for this year's CT, an incorrectly reported 138 allele will be counted as an error for the ranking. It was suggested to use the samples OCT08 or OCT10, and OCT15 (if possible – or samples with the same or similar alleles in OARFCB20 and INRA172) as reference samples in the next CT round.

7. Pigeon CT Discussion

The Duty lab was the National Research Institute of Animal Production (Poland). Thirteen labs requested samples. All labs reported results. Twenty-one samples (including one reference sample) were submitted to all participants. The relative overall marker concordance among labs was good, ranging from 91.15% (CliµD16) to a maximum of 100% (CliµD11). There were no disputed loci in the core panel in this PCT round. Only minor errors occurred in individual laboratories. The first parentage question was answered correctly by all labs. The second parentage question was answered correctly by four out of thirteen labs. The reason for a high percentage of incorrect answers was the fact that some labs considered only a core panel. Therefore, it is suggested that the core panel is insufficient for parentage testing when only one parent is considered. The Beijing Microread Genetics laboratory sequenced the PIGN 12 marker (backup panel) and proposed a new nomenclature of alleles occurring in this locus. It was proposed that an e-mail would be sent to PCT participants and, on this basis, a decision on a possible change of the nomenclature would be made.

8. Pig, Goat, and Sheep SNP panels for parentage verification

In the last CT (2020-21), participants expressed interest in SNP panels for Pig, Goat and Sheep. The committee investigated the options to set up SNPs panels for Pigs, Goats and Sheep. However, only NEOGEN presented a proposal for a panel for sheep based on the presentation "Selection of an Ovine SNP Parentage Panel for Consideration as the ISAG Comparison Test Panel" in 2024-2025. This lab volunteers to generate reference calls. Labs with allele frequency data that can be shared need to get in touch with the committee chair.

9. Enclosing disease markers in next CTs

All duty labs are encouraged to include a disease marker in the next CT. This is not required and is only possible if the duty lab can access samples with heterozygous and/or homozygous mutant genotypes for a disease marker.

COMPARISON TEST (2021-2023) YES NO		
Duty laboratory Pig		
Contact person: Amparo Martínez		
Affiliation: University of Cordoba, Spain		
E-mail address: ib2mamaa@uco.es		
Duty laboratory Dromedary		
Contact person: Marwa Chourabi		
Affiliation: Qatar genetic lab, Qatar		
E-mail address: marwa@tharb.net		
Duty laboratory Alpaca/Llama		
Contact person: Angelika Mąsior		
Affiliation: National Research Institute of Animal Production, Poland		
E-mail address: angelika.masior@iz.edu.pl		
Duty laboratory Pigeon		
Contact person: Angelika Mąsior		
Affiliation: National Research Institute of Animal Production, Poland		
E-mail address: angelika.masior@iz.edu.pl		
Duty laboratory Sheep		
Contact person: Agata Piestrzynska-Kajtoch		
Affiliation: National Research Institute of Animal Production, Poland		
E-mail address: agata.kajtoch@izoo.krakow.pl		
Duty laboratory Goat		
Contact person: Clementine Rodellar		
Affiliation: Laboratorio de Genética Bioquímica (LAGENBIO). University of Zaragoza, Spain		

E-mail address: rodellar@unizar.es

Election of the committee and any other business.

New Committee chair

Chair: Amparo Martinez

Term of service: first term of service 2017-2021, second term of service 2021-2025

Affiliation: University of Cordoba, Spain

New Committee co-chair

Co-Chair: Emiliano Lasagna
Term of service: first term of service 2019-2023, second term of service 2023-2025
Affiliation: Universitá degli Studi di Perugia, Italy
E-mail address: emiliano.lasagna@unipg.it

New Committee members

	First term of	Second term	
Other committee members	service	of service	Email address
Ntanganedzeni Mapholi	2017-2021	2021-2025	maphon@unisa.ac.za
Younes Miar	2017-2021	2021-2025	miar@dal.ca
Foluke Eunice Sola-Oja	2019-2023	2023-2027	solaojo.fe@unilorin.edu.ng
Angelika Mąsior	2021-2025	2025-2029	angelika.masior@iz.edu.pl
Rosina Fossati	2023-2027		fossati@genexa.com.uy
Jianseng Qiu	2023-2027		JQiu@neogen.com

List of recommended markers with primer information

Dromedary:			
ISAG STR Core Panel - Dromedary			
Locus	Forward	Reverse	
LCA8	GCTGAACCACAATGCAAAGA	AATGCAGATGTGCCTCAGTT	
LCA37	AAACCTAATTACCTCCCCA	CCATGTAGTTGCAGGACACG	
LCA56	ATGGTGTTTACAGGGCGTTG	GCATTACTGAAAAGCCCAGG	
LCA65	TTTTTCCCCTGTGGTTGAAT	AACTCAGCTGTTGTCAGGGG	
LCA66	GTGCAGCGTCCAAATAGTCA	CCAGCATCGTCCAGTATTCA	
YWLL29	GAAGGCAGGAGAAAAGGTAG	CAGAGGCTTAATAACTTGCAG	
YWLL44	CTCAACAATGCTAGACCTTGG	GAGAACACAGGCTGGTGAATA	
ISAG Addition	nal Markers - Dromedary		
Locus Forwa	ard Reverse		
CVLR01	GAAGAGGTTGGGGCACTAC	CAGGCAGATATCCATTGAA	
CVLR04	CCCTACCTCTGGACTTTG	CCTTTTTGGGTATTTTCAG	
CVLR05	CCTTGGACCTCCTTGCTCTG	GCCACTGGTCCCTGTCATT	
LCA99	CAGGTATCAGGAGACGGGCT	AGCATTTATCAAGGAACACCAGC	
LGU49	TCTAGGTCCATCCCTGTTGC	GTGCTGGAATAGTGCCCAGT	
VOLP3	AGACGGTTGGGAAGGTGGTA	CGACAGCAAGGCACAGGA	
VOLP32	GTGATCGGAATGGCTTGAAA	CAGCGAGCACCTGAAAGAA	
VOLP59	CCTTCCTCAGAATCCGCCACC	CCCGCGCACCAAGCAG	

NTERNATIONAL SOCIETY FOR ANIMAL GENETICS

YWLL08ATCAAGTTTGAGGTGCTTTCCCYWLL36AGTCTTGGTGTGGTGGTAGAAT

CCATGGCATTGTGTTGAAGAC TGCCAGGATACTGACAGTGAT

Alpaca/Llama:

Locus	Forward
LCA5	GTGGTTTTTGCCCAAGCTC
LCA8	GCTGAACCACAATGCAAAGA
LCA19	TAAGTCCAGCCCCACACTCA
LCA37	AAACCTAATTACCTCCCCA
LCA56	ATGGTGTTTACAGGGCGTTG
LCA65	TTTTTCCCCTGTGGTTGAAT
LCA66	GTGCAGCGTCCAAATAGTCA
LCA94	GTCCATTCATCCAGCACAGG
LCA99	CAGGTATCAGGAGACGGGCT
YWLL29	GAAGGCAGGAGAAAAGGTAG
YWLL40	CACATGACCATGTCCCCTTAT
YWLL44	CTCAACAATGCTAGACCTTGG
LGU49	TCTAGGTCCATCCCTGTTGC
LGU50	CTGCTGTGCTTGTCACCCTA

Reverse

ACCTCCAGTCTGGGGATTTC AATGCAGATGTGCCTCAGTT GGTGAAGGGGCTTGATCTTC CCATGTAGTTGCAGGACACG GCATTACTGAAAAGCCCAGG AACTCAGCTGTTGTCAGGGG CCAGCATCGTCCAGTATTCA ACATTTGGCAATCTCTGGAGAA AGCATTTATCAAGGAACACCAGC CAGAGGCTTAATAACTTGCAG CCAGTGACAGTGTGACTAAGA GAGAACACAGGCTGGTGAATA GTGCTGGAATAGTGCCCAGT AGCACCACATGCCTCTAAGT

ISAG Additional Markers - Llamas and Alpacas

Locus	Forward	Reverse
LCA24	ACTCACGGGTGACATACAGTG	GAGCAGTGTTTGGTTTGCATT
YWLL08	ATCAAGTTTGAGGTGCTTTCC	CCATGGCATTGTGTTGAAGAC
YWLL36	AGTCTTGGTGTGGTGGTAGAA	TGCCAGGATACTGACAGTGAT
YWLL43 (X-linked)	ATACCTCTCTTGCTCTCTC	CCTCTACAACCATGTTAGCCA
YWLL46	AAGCAGAGTGATTTAACCGTG	GGATGACTAAGACTGCTCTGA

Pigeon:

ISAG STR Core Panel - Pigeons

Locus	Forward	Reverse
CliµD11	CCAATCCCAAAGAGGATTAT	ACTGTCCTATGGCTGAAGTG
CliµT43	GGGAAAGGAAATTTGACACTG	ACTGTCGATGCCATTAAGAC
CliµD01	GATTTCTCAAGCTGTAGGACT	GTTTGATTTGGTTGGGCCATC
PIGN57	CTCTTGTATGTCCATCTGAAC	ACCCATTTACCACTCTCTAA
CliµT13	CTGTCGAGCAGTAACAGTCC	GTTTGCAAGCCCTGGTTATCTCA
CliµD16	GCAGTGATAAAGTTCTGGAACA	GTTTGCCTCACCGTGACATCA
CliµD19	CTGCCCGTTTCTTCTAATGCAC	GTTTGGATTTCTGGGAGTGTATG
CliµT02	AGTTTTAATGAAGGCACCTCT	TGTAGCATGTCAGAAATTGG
CliµD17	TCTTACACACTCTCGACAAG	GTTTCCACCCAAATGAGCAAG
CliµD35	GGGAGCTTAAGGGATTATTG	ATTCCTTGCATGCCTACTTA
CliµT17	ATGGGTTTGGAGATGTTTTG	GTTTGATGGAGTTGCTATTTTGCT
PIGN04	GGTTTTTCTGTTTCCTCACG	GGGATTCTGGGATTATTTTTC

ISAG INTERNATIONAL SOCIETY FOR ANIMAL GENETICS

ISAG Additional Markers - Pigeons

Locus	Forward	
PIGN15	TTTCCTTTCATTTGCTGTGG	
PIGN10	TTCCACTGAATGGGTCTCAG	
PIGN26	TCACTGTATTCACCAAAGTCTG	
PIGN12	CAGATCCAGCAGTCTTGAAG	

Reverse

AACCAGGCATTGGAGTCTTT CTGCCAGAAGGTAAATGACAC CAATGTGGGGGGCGTCTATG CCCATCTAATGCGATAAATCC

Pig:

ISAG STR Core Panel - Pig		
Locus	Forward	
S0005	TCCTTCCCTCCTGGTAACTA	
S0090	CCAAGACTGCCTTGTAGGTGAATA	
S0101	GAATGCAAAGAGTTCAGTGTAGG	
S0155	TGTTCTCTGTTTCTCCTCTGTTTG	
S0227	GATCCATTTATAATTTTAGCACAAAGT	
S0228	GGCATAGGCTGGCAGCAACA	
S0355	TCTGGCTCCTACACTCCTTCTTGATG	
S0386*	GAACTCCTGGGTCTTATTTTCTA	
SW24	CTTTGGGTGGAGTGTGTGC	
SW240	AGAAATTAGTGCCTCAAATTGG	
SW72	ATCAGAACAGTGCGCCGT	
SW857	TGAGAGGTCAGTTACAGAAGACC	
SW911	CTCAGTTCTTTGGGACTGAACC	
SW936	TCTGGAGCTAGCATAAGTGCC	
SW951	TTTCACAACTCTGGCACCAG	
* Recommende	ed amplification temperature: 48 ºC	

ISAG Additional Markers - Pig

Locus	Forward
IGF1	GCTTGGATGGACCATGTTG
S0002	GAAGCCCAAAGAGACAACTGC
S0026	AACCTTCCCTTCCCAATCAC
S0215	TAGGCTCAGACCCTGCTGCAT
S0225	GCTAATGCCAGAGAAATGCAGA
S0226	GCACTTTTAACTTTCATGATACTCC
SW632	TGGGTTGAAAGATTTCCCAA

Sheep:

Juccp.		
ISAG STR Core Panel - Sheep		
Locus	Forward	
AMEL	CAGCCAAACCTCCCTCTGC	
CSRD247	GGACTTGCCAGAACTCTGCAAT	
ETH152	TACTCGTAGGGCAGGCTGCCTG	
INRA005	TTCAGGCATACCCTACACCACATG	
INRA006	AGGAATATCTGTATCAACCGCAGTC	

Reverse

GCACTTCCTGATTCTGGGTA GCTATCAAGTATTGTACCATTAGG GTCTCCCTCACACTTACCGCAG AAAGTGGAAAGAGTCAATGGCTAT GCATGGTGTGATGCTATGTCAAGC AGCCCACCTCATCTTATCTACACT TTGGGTGGGTGCTGAAAAATAGGA GTCAAAAATCTTTTTATCTCCAACAGTAT ATCCAAATGCTGCAAGCG AAACCATTAAGTCCCTAGCAAA TTTGAAAATGGGGTGTTTCC GATCCTCCTCCAAATCCCAT CATCTGTGGAAAAAAAAAGCC GTGCAAGTACACATGCAGGG GATCGTGCCCAAATGGAC

Reverse

Reverse

CCCGCTTGGTCTTGTCTGTTGC CACTGTGGTTTGTATTAGTCAGG GAGACCTCAGGGTTGGTGATCAG AAATATTAGCCAACTGAAAACTGGG CTGAGCTGGGGTGGGAGCTATAAATA

INTERNATIONAL SOCIETY FOR ANIMAL GENETICS

	IN I ENNAI IUNAL JUUI	EI I FUN ANIMAL UENEI 163
INRA023	GAGTAGAGCTACAAGATAAACTTC	TAACTACAGGGTGTTAGATGAACTC
INRA063	GACCACAAAGGGATTTGCACAAGC	AAACCACAGAAATGCTTGGAAG
INRA172	CCAGGGCAGTAAAATGCATAACTG	GGCCTTGCTAGCCTCTGCAAAC
MAF065	AAAGGCCAGAGTATGCAATTAGGAG	CCACTCCTCCTGAGAATATAACATG
MAF214	AATGCAGGAGATCTGAGGCAGGGACG	GGGTGATCTTAGGGAGGTTTTGGAGG
McM042	CATCTTTCAAAAGAACTCCGAAAGTG	CTTGGAATCCTTCCTAACTTTCGG
McM527	GTCCATTGCCTCAAATCAATTC	AAACCACTTGACTACTCCCCAA
OarFCB20	GGAAAACCCCCATATATACCTATAC	AAATGTGTTTAAGATTCCATACATGTG
Goat:		
ISAG STR Core	e Panel - Goat	
Locus	Forward	Reverse
CSRD247	GGACTTGCCAGAACTCTGCAAT	CACTGTGGTTTGTATTAGTCAGG
ILSTS008	GAATCATGGATTTTCTGGGG	TAGCAGTGAGTGAGGTTGGC
ILSTS19	AGGGACCTCATGTAGAAGC	ACTTTTGGACCCTGTAGTGC
ILSTS87	AGCAGACATGATGACTCAGC	CTGCCTCTTTTCTTGAGAGC
INRA005	TTCAGGCATACCCTACACCACATG	AAATATTAGCCAACTGAAAACTGGG
INRA006	AGGAATATCTGTATCAACCGCAGTC	CTGAGCTGGGGTGGGAGCTATAAATA
INRA023	GAGTAGAGCTACAAGATAAACTTC	TAACTACAGGGTGTTAGATGAACTC
INRA063	GACCACAAAGGGATTTGCACAAGC	AAACCACAGAAATGCTTGGAAG
MAF65	AAAGGCCAGAGTATGCAATTAGGAG	CCACTCCTCCTGAGAATATAACATG
McM527	GTCCATTGCCTCAAATCAATTC	AAACCACTTGACTACTCCCCAA
OarFCB20	GGAAAACCCCCATATATACCTATAC	AAATGTGTTTAAGATTCCATACATGTG
SRCRSP23	TGAACGGGTAAAGATGTG	TGTTTTTAATGGCTGAGTAG
		TGAAATGAAGCTAAAGCAATGC
SRCRSP5	GGACTCTACCAACTGAGCTACAAG	IGAAAIGAAGCIAAAGCAAIGC

Duty laboratory for the next comparison test (2024 – 2025) Duty laboratory Pig

Contact person:	
Affiliation:	
E-mail address:	

Duty laboratory Dromedary

Contact person: Robert Grahn	
Affiliation: Veterinary Genetics Laboratory, Davis, USA	
E-mail address: ragrahn@ucdavis.edu	

Duty laboratory Alpaca/Llama

Contact person: Angelika Mąsior	
Affiliation: National Research Institute of Animal Production, Poland	
E-mail address: angelika.masior@iz.edu.pl	

Duty laboratory Pigeon

Contact person: Angelika Mąsior

Affiliation: National Research Institute of Animal Production, Poland

E-mail address: angelika.masior@iz.edu.pl

Duty laboratory Sheep

Contact person: Agata Piestrzynska-Kajtoch

Affiliation: National Research Institute of Animal Production, Poland

E-mail address: agata.kajtoch@izoo.krakow.pl

Duty laboratory Goat

Contact person: Amparo Martínez

Affiliation: University of Cordoba, Spain

E-mail address: ib2mamaa@uco.es

SIGNATURES

Chair

Duty laboratory